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Abstract

Forest incentives are a commonly used tool to promote conservation and restora-

tion efforts. However, while there is a large literature studying their effectiveness, it

focuses mostly on the effects of small-scale programs designed to promote forest con-

servation. In this paper, we evaluate the effects of three of the largest and longest

running forest incentive programs in the world – Guatemala’s three forest incentive

programs (PINFOR, PINPEP, and PROBOSQUE) – designed to offer incentives for

forest conservation and restoration efforts. We assemble data on environmental out-

comes of more than 80,000 plots that participated in these programs for a period of

more than two decades. We then use difference-in-difference techniques to document

that they had positive effects on tree cover and above- and below-ground biomass car-

bon, with effects increasing with the length of exposure to the programs and being

quite heterogeneous depending on the purpose of the incentives and plot character-

istics. Nevertheless, because the effects are modest (4-6% increase in the outcome of

interest) and the programs are generous, cost-benefit calculations indicate that costs

exceed environmental benefits for most plots. These results highlight the need for

improving targeting and calibrating incentives to enhance the environmental gains of

large-scale forest incentive programs.
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1 Introduction

Promoting the conservation and restoration of tropical forests is key to mitigate climate

change, protect biodiversity, and ensure the provision of key eco-system services for com-

munities (Dasgupta, 2021; IPCC, 2022). Forest incentives are a popular tool used by gov-

ernments to promote conservation and restoration efforts (Wunder et al., 2020). However,

while there is a large literature studying their effectiveness, it focuses mostly on the effects

of small-scale programs designed to promote forest conservation.

This paper investigates the long-term effects of three large-scale forest incentive programs

(PINFOR, PINPEP, and PROBOSQUE) in Guatemala designed to promote forestry, agro-

forestry, forest restoration, and forest conservation. Guatemala – a major agricultural ex-

porter – has experienced significant deforestation over the last decades driven mainly

by agricultural expansion (Inter American Development Bank, 2020). PINFOR, PINPEP,

and PROBOSQUE were designed to mitigate these trends by offering generous payments

for various land management practices (Cristales et al., 2022). This study evaluates the

long-term effectiveness of these payments both in aggregate and by modality (forestry,

agro-forestry, conservation etc.).

Our analysis proceed in four steps. First, we construct a geo-referenced database con-

taining information on over 80,000 plots enrolled in the incentive programs provided by

the Guatemalan National Institute of Forests (INAB) (“treatment” plots) with data from

over 400,000 randomly generated 100-meter radius (3.1-hectare) plots located elsewhere in

Guatemala (“control” plots). Second, we use satellite information (Landsat 7 and MODIS)

and other types of GIS information to calculate forest cover, forest height, and vegetation

indices, and above- and below-ground biomass carbon, elevation, slope, distance to cities

and rivers both for treatment and control plots.1 Third, we use propensity score matching

(PSM) to create comparable treatment and control groups according to initial plot charac-

1We use a random forest model to predict annual above- and below-ground biomass carbon for periods
where data was unavailable.
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teristics. Fourth, we use difference-in-differences (DID) estimators to compute the effects

of the programs.

The results indicate positive but modest effects of forest incentive programs on tree cover

and carbon storage. Tree cover increased by 2.6 percentage points while carbon storage

increases by 2.7 tC/ha (9.2 tCO2eq/ha) after one decade – these numbers represent a 4-5%

increase relative to the baseline. These results are robust to the matching procedure as well

as to the differences-in-differences estimator used. There is significant variation across

programs and project types. Across programs, PINFOR and PROBOSQUE showed larger

effects than PINPEP, suggesting that incentives for large-holders were more effective than

incentives for small-holders. Across modalities, we find that incentives for forestry plan-

tations had the highest effects while incentives for conservation had the lowest. Impacts

of incentives for agro-forestry were in between. Across initial characteristics, we find that

plots with initially poorer forest conditions showed greater responsiveness to the incen-

tives.

We monetize the benefits of Guatemala’s forest incentive programs in terms of ecosystem

services and carbon storage to perform a cost-benefit analysis. While the programs had

positive environmental impacts, their generous payments and relatively modest effects

lead to cost-benefit below 1 for most project types. This result aligns with existing litera-

ture, which indicates that large-scale projects can often yield low cost-benefit ratios due to

factors such as inadequate targeting and weak policy design (McElwee and Nghi, 2021).

The findings contribute to the existing literature on forest incentives by providing a com-

prehensive long-term evaluation of large-scale programs that provide financial incentives

not only to forest conservation but also to forest restoration. This contrasts with the fo-

cus on forest conservation of most existing literature (see Jayachandran et al. (2017) for

seminal work in this area and Börner et al. (2020) for a review of the effects of programs
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designed to provide incentives for forest conservation).2 Our findings show that finan-

cial incentives also induce forest restoration (even more than forest conservation). How-

ever, while the programs studied here do not create incentives for replacing high quality

native forests for low quality planted forests as documented in other settings (e.g., Heil-

mayr, Echeverría and Lambin (2020)), the effects are not large enough to cover their rela-

tively high costs. This has important implications for global debates on forest restoration –

highly regarded as one of the most effective ways of removing GHG from the atmosphere

(e.g., Bastin et al. (2019) and Baumbach et al. (2023)). The heterogeneity of the results

confirms previous findings from programs designed to promote conservation that their

effects depend fundamentally on the opportunity costs of different land uses.

Our findings are closely related to the findings of Patrick, Butsic and Potts (2023) who

also evaluate Guatemala’s forest incentive programs. Our work differs from theirs in two

dimensions. First, we use more comprehensive data – our data covers more plots, contains

information on their size, encompass more measures of vegetation cover, and includes

information on carbon stocks (above- and below-ground). Second, exactly because our

data is more comprehensive, we are able to use an empirical framework that explores the

timing of entry and exit of the plots into the forest incentive programs. This enables us

to rule out that our results are driven by improvements in the environmental outcomes

that were occurring before the enrollment of the plots in the forest incentive programs –

the key issue in their analysis. It also enables us to better understand the dynamics of the

effects (and their persistence).

Taken together, these dimensions enables us to draw new insights regarding Guatemala’s

forest restoration programs. Moreover, our methods and findings offer a valuable refer-

2A literature review by Börner et al. (2020) was able to identify 136 estimates with counterfactual based
treatment effects of conservation mechanisms. The statistical methods and forest indicators used to assess
the effectiveness of these programs vary considerably. According to the authors, most studies estimated
the average treatment effect on the treated using some type of covariate matching (111 out of 136 studies),
followed by matching combined with difference-in-difference (DID) (11 out of 136 studies). Some of the
most used forest indicators include forest cover, deforestation, and normalized difference vegetation index
(NDVI) (Börner et al., 2020; Wunder et al., 2020).
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ences for policymakers in other countries aiming to develop or reform similar forest in-

centive initiatives. In particular, the ability to isolate causal effects and estimate dynamic

effects provides a practical model for improving program effectiveness and long-term sus-

tainability in numerous settings

The rest of this paper is organized as follows. Section 2 presents a brief description of

Guatemala’s forest incentive programs. Section 3 describes the data and the methods

used in the analysis. Section 4 reports and discusses the results. Section 5 concludes and

discusses policy recommendations.

2 Forest Incentive Programs in Guatemala

2.1 Background

The preservation and restoration of Guatemala’s forests are prioritized within the nation’s

legal framework. The 1985 Constitution (Article 126) highlights the importance of forest

conservation and restoration.3 Subsequently, the National Institute of Forests (Instituto

Nacional de Bosques, INAB) was established by the forest law (Decree 101/1996). INAB

introduced three forest incentive programs (PINFOR, PINPEP, and PROBOSQUE) fur-

thering Guatemala’s commitment to its forests.

PINFOR (Programa de Incentivos Forestales) was the first forest incentives program estab-

lished in Guatemala. It was established in 1996 (Decree 101/1996) to promote productive

forests with a focus of simultaneously providing ecosystem services and stimulating eco-

nomic growth. Initially, 80% of PINFOR funds were allocated to reforestation or natural

regeneration, and 20% to natural forest conservation. Beneficiaries needed a minimum of

3Even before the constitutional recognition of the importance of forest conservation and restoration,
Guatemala already had incentives for forest-related activities. Decree 58/1974 created an incentives system
aimed to stimulate the development of a robust commercial forestry industry. This legislation allowed the
deduction for a period of ten years of the costs invested in restoration and forest plantations of over than 5
hectares of income and vehicles taxes. Companies – mostly large ones – were allowed to deduct up to 50%
of their tax burden. See Larrazábal Melgar et al. (2009) for details.
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two hectares of land to participate in the program – excluding 45% of landowners from

the program. Over time, some small beneficiaries, supported by their municipalities, suc-

cessfully enrolled in PINFOR. However, most of the funds (75.7% between 1998 and 2016)

were allocated to large private landowners or companies, rather than smallholders (see

vonHedemann (2020) for details).

PINPEP (Programa de Incentivos para Poseedores de Pequeñas Extensiones de Tierras de Vocación

Forestal o Agroforestal) was created to provide forest incentives to smallholders who were

not able to access PINFOR. It was established in 2010 (Decree 51/2010) with a focus of

providing ecosystem services, stimulating economic growth, and inducing rural develop-

ment. Its creation aimed to increase smallholders access to forest incentives with the pro-

gram focusing on properties with less than 15 hectares. PINPEP is largely based on a pro-

gram funded by the Dutch government created in 2006 and absorbed by the Guatemalan

government in 2010.

In 2016, PROBOSQUE (Programa de Incentivos para establecimiento, recuperación, manejo, pro-

ducción y protección de bosques en Guatemala) was created to replace PINFOR. PROBOSQUE

was established by Decree 02/2015 — this decree shifted the program’s focus to empha-

size the provision of ecosystem services as its key objective, included agroforestry in the

program, and reduced the minimum area requirement to 0.5 hectares. Furthermore, the

decree changed the land titling requirements — PROBOSQUE accepts not only formal ti-

tles as PINFOR but also ancestral titles of indigenous communities’ land. Guatemala’s for-

est incentive programs are among the longest running and largest scale forest incentives

programs in the world. More than USD 700 million have been invested in Guatemala’s

forest incentive programs since 1996, two thirds in PROBOSQUE and PINFOR and one

third in PINPEP. These resources have supported conservation and restoration activities

in more than 400,000 hectares.
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2.2 Payments and Enrollment

To participate in Guatemala’s forest incentive programs, landholders must submit a man-

agement plan to INAB. If the plan is approved, INAB will evaluate the enrolled parcels

periodically. The available streams are management of natural forests for production,

management of natural forests for protection, forest plantations, restoration of degraded

forests, and agro-forestry systems. Landholders must provide evidence of their right to

the parcels enrolled in forest incentive programs—requirements in terms of land titles are

different across programs with PINPEP accepting informal land titles and the other pro-

grams requiring formal land titles.

The forest incentive programs in Guatemala provide different amounts and durations of

support depending on the activity. The structure of the support provided by the current

programs is summarized as follows:

In PINPEP, the annual payments are currently the following:

• USD 398 per hectare for managing natural forest for production for plots between 0.1

and 5 hectares and USD 1,991 for the first 5 hectares plus USD 111 for each additional

hectare for plots over 5 hectares. Payments are made for a period of 10 years.

• USD 372 per hectare for managing natural forest for protection for plots between 0.1

and 5 hectares and USD 1,861 for the first 5 hectares plus USD 96 for each additional

hectare for plots over 5 hectares. Payments are made for a period of 10 years.

• USD 296-394 per hectare for forestry plantations, with smaller amounts for larger

plantations. Payments are made for a period of 6 years.

• USD 148-197 per hectare for agroforestry systems, with smaller amounts for larger

systems. Payments are made for a period of 6 years.

In PROBOSQUE, the annual payments are currently the following:
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• USD 181-322 per hectare for managing natural forest for production, depending on

the type of production, with additional amounts for plots larger than 15 hectares.

Payments are made for a period of 10 years.

• USD 350 per hectare for forest protection. Payments are made for a period of 10

years.

• USD 490- 578 for forestry plantations, depending on their destination. Payments are

made for a period of 5-6 years.

• USD 290-320 for restoring degraded forests, depending on their type. Payments are

made for a period of 10 years.

• USD 211-320 for agro-forestry systems, depending on the original forest density

(lower density receives lower amounts). Payments are made for a period of 6 years.

3 Data and Methods

We estimate the dynamic effects of Guatemala’s forest incentives on four different out-

come variables following five-step procedure outlined below:

1. We cleaned a forest incentives database obtained from INAB containing GIS in-

formation of the plots enrolled in the three forest incentive programs (“treatment”

plots).

2. We created a dataset of 3.1 ha (100m radius) random plots located in areas without

forest incentives and outside protected areas across Guatemala (“control” plots).

3. We extracted covariates for treated and untreated plots and used propensity score

matching (PSM) to construct a dataset with comparable groups of treated and un-

treated plots.

4. We calculated the treatment effect of forest incentive programs on the following out-
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comes: tree cover, above and below ground biomass carbon (ABGBC), fractional

vegetation cover (FVC), and normalized difference vegetation index (NDVI) using a

number of differences-in-differences (DID) estimators.

5. We performed a cost-benefit analysis to compare the environmental benefits (carbon

storage and eco-system services) of Guatemala’s forest incentives programs with its

economic costs (USD/ha currently paid by the programs). We evaluated the overall

cost-benefit of the forest incentive programs as well as the effects by program and

project type.

Figure 1 presents a schematic presentation of the five-step process used in the analysis.

The following subsections discuss each step in more detail. Appendices A, B, C, and D

provide more details on the data and methods used.
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Figure 1: Schematic diagram showing the modeling framework used to estimate the im-
pact of forest incentives programs in Guatemala

3.1 Treatment Plots

The main source of data used throughout this paper is geo-referenced data on the plots en-

rolled in Guatemala’s forest incentive programs – treatment plots – obtained from INAB.4

For each treatment unit, this database contains information on the program (PINFOR,

4It contains information from the beginning of each program up to August 2023.
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PINPEP or PROBOSQUE), the project type (e.g., restoration, conservation, agro-forestry),

the type of owner (individual, municipality, business, NGO, etc.), location (region, depart-

ment, municipality), and the period it received financial incentives (different phases for

each project, with first year and last year for each one of them).

We cleaned this dataset using the following procedures:

1. We checked if there were any relevant overlaps between plots. If overlapping area

between two plots was small (<1% on area of plots), these plots remained in the

database. Otherwise, plots were flagged and assessed further for exclusion in the

analysis.

2. We checked consistency of reported location and geo-spatial information, mainly,

the assigned Department within Guatemala. We flagged those plots with wrong

Department and excluded from our analysis.

3. We extracted predictors to apply the propensity score matching algorithm, but flagged

those plots with missing data and excluded from our analysis.

It should be noted that some plots were flagged more than once (i.e., wrong department

and overlap of at least 1%, or wrong department and missing data).

The original INAB dataset contained information of 83,677 plots (434,184 hectares). There

is some overlap in 30,696 plots (roughly 37% of the plots). However, the typical intersec-

tion is small – only 1,064 plots (25,417 hectares) had an overlap of more then 1% of the plot

area and were excluded from the analysis. Other 3,035 plots (15,071 hectares) which had

the wrong department assigned and 609 plots (10,030 hectares) with missing data on co-

variates or outcomes were also excluded from the analysis. The final dataset of treatment

plots had 79,156 plots (94.6% of original number of plots) with a total of 394,636 hectares

(90.6% of original area).

Table 1 reports some descriptive statistics of the final dataset. The most common program
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is PINPEP (52,515 plots), followed by PROBOSQUE (16,902 plots), and PINFOR (9,739

plots). However, in terms of area, the largest program is PINFOR (mean = 10.6 ha, SD =

88.4 ha), followed by PROBOSQUE (mean = 7.9 ha, SD = 35 ha), and PINPEP (mean = 3

ha, SD = 2.9 ha). This is coherent with the characteristics of each of the programs. For

example, the mean area is highest for PINFOR and lowest for PINPEP as is the minimum

area required in each case (i.e., 2 ha for the former and 0.1 ha for the latter). The average

treatment plot has 5 hectares and received payments for an average of 4.8 years.

Table 1: Descriptive statistics by program

Program Legal
period

Legal
minimum area

Number of
plots

Area*
(hectares)

Time active*
(years)

PINFOR 1996-2005 2 ha 9,739 10.6 (88.4) 6 (2.4)
PINPEP 2010-present 0.1 ha 52,515 3 (2.9) 5.2 (2.7)
PROBOSQUE 2016-present 0.5 ha 16,902 7.9 (35) 2.9 (1.8)
TOTAL 79,156 5 (35.2) 4.8 (2.7)
* mean (standard deviation)

3.2 Control Plots

INAB’s dataset only contains information of plots that enrolled in Guatemala’s forest in-

centive programs. Thus, we created our own control units. To do this, we randomly

created 100 meters (100m) radius plots located outside protected areas5 (and outside for-

est incentives programs areas) throughout Guatemala. In total, we were able to create

500,663 plots (roughly six times the number of original treated plots). Appendix B further

describes this procedure. Prior to applying the propensity score matching, we also ex-

cluded control plots with missing data, ending up with a total of 494,087 potential control

plots.

5There are 349 protected areas covering 32% of the Guatemalan territory according to the Sistema
Guatemalteco de Área Protegidas (SIGAP)
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3.3 Propensity Score Matching

To ensure that control plots were comparable to treatment plots, we used propensity score

matching (PSM). We used a series of variables in our PSM algorithm to characterize base-

line conditions (i.e., conditions before the forest incentive programs began). Elevation, as-

pect, and slope were obtained from the NASA Shuttle Radar Topographic Mission (SRTM)

digital elevation data (Jarvis et al., 2008). Forest cover and forest height for 2000 were ob-

tained from the Global Land Analysis and Discovery lab (GLAD) (Potapov et al., 2022).

Travel time to cities with a population larger than 20k was obtained from (Nelson et al.,

2019). Distance to rivers and streams was obtained from the HydroSHEDS dataset (Lehner

and Grill, 2013). Finally, mean annual precipitation, mean annual temperature, and pre-

cipitation during the driest month were obtained from the Worldclim dataset (Hijmans

et al., 2005). Appendix C presents the details of the estimation of the propensity score,

the matching procedure used, more details on the matching variables, and the various

sensitivity analysis performed.

Figure 2 shows the spatial distribution of treated (panel A) and untreated (panel B) plots.

PSM seems to match plots adequately. Figure 2 show the means of selected variables

used in the procedure are adequately balanced between treated and untreated plots. This

can be further observed in Figure B.1 which reports the region of common support be-

tween treatment and control plots before and after the matching as well as an estimate of

the standardized mean difference and the Kolmogorov-Smirnov statistic before and after

matching.

Figure C.2 shows the annual mean values for the four outcome variables for treated and

matched untreated plots. It provides suggestive evidence that outcomes were improving

more in treatment plots than in control plots. Table C.1 provides descriptive statistics of

the outcome variables in 2001 and 2023 for treatment and control plots. It reinforces the

result that outcomes improved more in treatment plots than in control plots in the pe-
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riod under analysis. The key shortcoming with these descriptive statistics is that they do

not enable us to test whether the relative increases in outcomes of interest in the treat-

ment plots were occurring before these plots enrolled in the forest incentive programs –

a limitation of previous work on these programs like Patrick, Butsic and Potts (2023). By

exploring the timing of enrollment in detail, our treatment effects estimation deals with

this issue.

Figure 2: Location (distribution) of (A) selected treated and (B) untreated plots
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Table 2: Descriptive statistics for selected variables

Treated* Untreated*

Variable All PINFOR PINPEP PROBOSQUE All

Space
MODIS Tree
cover 2001 (%)

44.7 (20.2) 44.4 (21.2) 42.8 (20) 51 (18.9) 45.1 (18.8)

Spawn et al. (2020) - Above
and below ground biomass
carbon 2000 (MgC/ha)

62.5 (29.8) 55.7 (32.7) 63.1 (28.9) 64.4 (30.4) 61.7 (29.7)

GLAD Forest
cover 2000 (share)

0.9 (0.2) 0.8 (0.3) 0.9 (0.2) 0.9 (0.3) 0.9 (0.2)

GLAD Forest
height 2000 (meters)

13.4 (7.2) 11.3 (7.1) 13.5 (7) 14.4 (7.5) 13.2 (6.4)

Threat
Orientation of slope
(degrees 0 to 360)

15.3 (8.5) 11.2 (8.8) 17.2 (7.9) 11.8 (8.2) 15.4 (9)

Travel time to cities with
population above 20k (mins)

83.8 (98.7) 78.1 (89.9) 76.4 (93.2) 110.2 (114.4) 80.8 (104.4)

Distance to rivers and
streams 2010 (meters)

255.8 (470.7) 320.7 (529.7) 256.3 (467.1) 216.6 (440.4) 248.4 (493.8)

* mean (standard deviation) for treated and matched untreated plots

3.4 Treatment Effects

To estimate the effects of Guatemala’s forest incentive programs, compute a 2×2 differences-

in-differences estimator comparing the difference in outcomes in period 0 (before all plots

were treated) and from 10 years before to 10 years after each plot was treated between

treatment and control groups. This estimator identifies the effects of the forest incentive

programs under hypotheses of parallel trends and no anticipation. We also explore if there

are any differences when comparing the difference in outcomes with period -1 (instead of

0). We control for all covariates that were previously used in the matching procedure.

As a sensitivity analysis, we use the event study estimator developed by De Chaisemartin

and d’Haultfoeuille (2024). This estimator generalizes event study estimators robust to

heterogeneity in treatment timing such as Callaway and Sant’Anna (2021) and De Chaise-

14



martin and d’Haultfoeuille (2020) to settings in which treatment might be reversed.6 It is

thus ideal to our setting as farmers/ranchers enter in forest incentives programs at dif-

ferent moments and exit forest incentives programs after some time. The event study

estimator developed by De Chaisemartin and d’Haultfoeuille (2024) has the same iden-

tification hypotheses of the differences-in-differences estimator described earlier. In our

application, these hypotheses imply that outcome of interest should have evolved compa-

rably between treatment and control units in the absence of the forest incentive programs

and that farmers/ranchers should not have made changes because they expected to enroll

in forest incentives programs in the future.

We estimated the forest incentives’ programs overall effects as well as their effects by pro-

gram (PINFOR, PINPEP, PROBOSQUE), project type (Agroforestry, Forestry plantations,

NFM Production, NFM Protection), and location (regions, ecoregions, and departments).

We further evaluated whether the forest incentives’ effects changed according to the fol-

lowing initial plot conditions: slope, area, distance to cities, and the initial values of the

outcomes of interest. For each variable, we estimate the effects separately above and be-

low the median of the variable.

We considered four outcomes of interest. Our main analysis focuses mainly on the impact

of forest incentives programs on tree cover and above and below ground biomass carbon

(a proxy for carbon stock). These results will help us perform an analysis of the costs and

benefits of these programs. To assess how our results change when using spatial data with

a finer spatial resolution, we explore the impact of these programs on two other variables:

Landsat 7 fractional vegetation cover (FVC) and normalized difference vegetation index

(NDVI). For all variables, we extracted annual mean values for each plot (treated and

untreated) for the years 2001-2023.

6De Chaisemartin and d’Haultfoeuille (2020) and Callaway and Sant’Anna (2021) introduce consistent
estimators for the ATT(g,t) – the treatment effects for cohort g and period t – for setting in which there
is heterogeneity of treatment time. They also show how these estimators can be aggregated to compute
the dynamic effects of policies. However, these estimators do not allow for the case in which treatment is
reversed.
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To estimate tree cover, we used the MOD44B Version 6.1 Vegetation Continuous Fields

(Dimiceli, Sohlberg and Townshend, 2022) which has a spatial resolution of 250m. To es-

timate annual above and below ground biomass carbon, we obtained above and below

ground biomass carbon (abgbc) density (MgC/ha) for the year 2010 at a 300m spatial res-

olution from Spawn et al. (2020). We then developed a random forest model to predict

abgbc for other years (i.e., 2001 to 2009, 2011 to 2023), based on a series of spatial and

spatio-temporal predictors. Appendix D presents the details on model development and

performance. To compute annual fractional vegetation cover (FVC) and normalized dif-

ference vegetation index (NDVI), we use the Google Earth Engine algorithm developed

by (Ermida et al., 2020). FVC represents the ratio between the vertical projected area of

above-ground green vegetation and the total vegetation area (Yang et al., 2017). Values of

FVC range from 0 (no green vegetation) to 1 (only green vegetation). NDVI is a vegetation

index with values that range from -1 to 1. Values indicate: below 0, water and other non-

vegetated features, between 0 and 0.3, no vegetation cover; between 0.3 and 0.6, sparse

vegetation cover; between 0.6 and 0.9, dense and healthy vegetation cover; above 0.9,

very dense vegetation as rainforest. In our analysis, FVC was calculated at 30m spatial

resolution while NDVI was calculated at 100m spatial resolution.

3.5 Cost-benefit analysis

We use the estimates obtained in the previous sections to monetize the benefits of Guatemala’s

forest incentive programs in terms of ecosystem services and carbon storage. We convert

changes in tree cover into changes in ecosystem services using data from Bank (2021).

This data reports that a typical hectare of forests in Guatemala generates USD 32.7 per

year in benefits from the production of non-timber forest products, USD 24.1 per year in

benefits from watershed protection, and USD 319.5 per year in benefits from recreation,

hunting, and fishing. We monetize changes in carbon storage assuming a price of USD
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20 / tCO2eq and a discount rate of 5%.7 We assumed that benefits were permanent (con-

sistent with our findings for the period under analysis). We calculated the project costs

based on payments from the different programs and project types reported in section 2.

We performed the analysis for the typical plot enrolled in the programs, for typical plot

enrolled in each program per program, and for the typical plot of each program / project

type.

4 Results

4.1 Treatment Effects

Figure 3 shows the dynamics of tree cover and above and below ground biomass carbon

in treated/untreated plots over time, with a window of 10 years before and after the treat-

ment. Here, we focus on the overall effects (all programs), and can see how before treat-

ment there were minor differences (treated vs. untreated) in trends, at least up to 5 years

pre-treatment. After treatment, both tree cover and above and below ground biomass car-

bon begin to increase in treated plots relative to untreated 1-2 years after enrollment in the

forest incentive programs. Figure 3 also shows how these dynamics change when using a

different reference point (i.e., the year chosen as the last period before treatment change),

with consistent patterns for year 0 and -1. The results show a consistent increase in treat-

ment effect for both outcomes reaching more than 2.5 p.p. (p-value<0.001) for tree cover

and almost 2.7 (MgC/ha) (p-value<0.001) for above and below ground biomass carbon.

Figure E.1 in the appendix shows these results for all four outcome variables. The chosen

reference year does not seem to have a big influence in these results, and although all four

present different patterns before treatment - particularly Landsat 7 FVC and NDVI com-

pared to tree cover and above and below ground biomass carbon - in all cases a consistent

7It is also possible to convert changes in tree cover directly into changes in carbon storage using data on
carbon storage in Guatemala’s forests. We find similar results using this approach.
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increase in treatment effect is observed until 10 years after treatment.

As discussed previously (subsection 3.4), we also used an event study design to investi-

gate the dynamics of land use in treated/untreated plots in more detail. Figure E.2 shows

how results compare when using DID w/matching vs. event study estimator developed

by De Chaisemartin and d’Haultfoeuille (2024). Some differences are observed when com-

paring results estimated using DID w/matching compared to the event study estimator,

particularly for years further away (before and after) from treatment, but increasing trends

in time are consistent in all cases after treatment. Differences in magnitudes are likely due

to not controlling for matching covariates with the event study estimator as we did with

DID w/matching. Table E.1 in appendix shows a summary of treatment effects for the

four outcome variables, 5 and 10 years after treatment, when using DID w/matching and

the event study estimator.

Figure 3: The dynamic effects of Forest Incentives on Tree Cover(%) and Above and Below
Ground Biomass Carbon (MgC/ha)

Table 3 reports the numerical estimates of effects of forest incentives on tree cover and

above and below ground biomass carbon, 5 and 10 years after treatment, using differences-

in-differences with matching. We estimate that forest incentives increase tree cover by 1.37
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p.p. (95% CI, 1.25 - 1.48) after 5 years of treatment and by 2.64 p.p. (95% CI, 2.4 - 2.88) after

10 years of treatment. These are relatively modest impacts – an average increase of 5.9%

in tree cover (2.64 over 44.7%) and 4.3% in carbon storage (2.74 over 63 MgC/ha abgbc)

relative to the baseline across all programs. This translates into a Cohen d – a measure of

effect size – of 0.13. As a comparison, the studies of the impacts of PES programs reviewed

by Wunder et al. (2020) had an average Cohen d of 0.19. Although the impacts are modest,

the alignment of the results for tree cover and above and below ground biomass carbon

across all estimates suggest that the programs do not create incentives for replacing high-

quality native forests for low quality planted forests as documented in other settings (see

Heilmayr, Echeverría and Lambin (2020)). There is also no evidence that the effects revert

after the forest incentives end – the effects continue increasing up to 10 years although

most plots stop receiving after 5 years.

There is considerable heterogeneity in the effects of Guatemala’s forest incentive pro-

grams. The 10-year effect of PINPEP is 1.69 p.p. (95% CI, 1.4 - 1.98) while the 10-year

effect of PINFOR is 4.34 p.p. (95% CI, 3.86 - 4.81). PROBOSQUE, which has been active

for less time, has a 5-year effect of 3.16 (95% CI, 2.64 - 3.68). The relative magnitudes of the

treatment effect estimates for above and below ground biomass carbon are largely com-

parable to those for tree cover. The 10-year effect for PINPEP and PINFOR is of 1.58 (95%

CI, 1.33 - 1.84) and 4.87 (95% CI, 4.42 - 5.31) (MgC/ha) respectively, while the 5-year effect

for PROBOSQUE is of 2.2 (95% CI, 1.77 - 2.62). Heterogeneity across programs is largely

explained by differences in the activities supported by each of them. A larger propor-

tion of projects (31.9%) in PINFOR and PROBOSQUE are forestry plantations compared

to PINPEP (12.3%), which is the project type with one of the highest treatment effects.

There is also substantial heterogeneity depending on the location of beneficiaries and their

characteristics. All regions (Figure 4) show positive treatment effects for tree cover (%) 10

years after treatment with effects ranging from 1.4% (95% CI, 0.79-2.01) in the Northeast

to 5.52% (95% CI, 3.10-7.93) for Guatemala. There seems to be higher heterogeneity in
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Table 3: Effects on Tree Cover (%) and Above and Below Ground Biomass Carbon
(MgC/ha): DID w/ matching

Program/
Project type

Years
since
treatment

Tree cover (%) Above and below ground
biomass carbon (MgC/ha)

All 5 1.37 (1.25 - 1.48)*** 1.4 (1.31 - 1.5)***
10 2.64 (2.4 - 2.88)*** 2.74 (2.52 - 2.96)***

Program

PINPEP 5 0.62 (0.49 - 0.76)*** 0.83 (0.72 - 0.93)***
10 1.69 (1.4 - 1.98)*** 1.58 (1.33 - 1.84)***

PINFOR 5 2.17 (1.86 - 2.49)*** 2.85 (2.56 - 3.14)***
10 4.34 (3.86 - 4.81)*** 4.87 (4.42 - 5.31)***

PROBOSQUE 5 3.16 (2.64 - 3.68)*** 2.2 (1.77 - 2.62)***
Project type

Agroforestry 5 0.76 (0.3 - 1.23)** 1.2 (0.85 - 1.55)***
10 1.95 (0.96 - 2.94)*** 1.74 (0.92 - 2.55)***

Forestry plantations 5 2.89 (2.58 - 3.19)*** 3.75 (3.49 - 4.02)***
10 4.96 (4.45 - 5.47)*** 5.5 (5.02 - 5.99)***

NFM Production 5 1.6 (0.74 - 2.45)*** 2.01 (1.15 - 2.87)***
10 -0.66 (-2.04 - 0.72) 0.06 (-1.41 - 1.53)

NFM Protection 5 0.8 (0.65 - 0.94)*** 0.47 (0.34 - 0.59)***
10 1.18 (0.88 - 1.49)*** 0.71 (0.43 - 0.99)***

Other 5 0.83 (-0.82 - 2.48) 3.07 (1.76 - 4.38)***
10 10.02 (7.76 - 12.27)*** 11.53 (9.83 - 13.24)***

Notes: *** p<0.01; ** p<0.05; * p<0.10.

point estimates by departments and ecoregions (Figure E.5 and E.6) although it is often

not possible to rule out that estimates are equal due to the wide confidence intervals of

most estimates.8

We also explored how these estimates varied by different initial plot conditions (Figure

5). Plots with relatively more “negative” characteristics (e.g., lower forestation rate, lower

tree cover prior to treatment, further away from cities, etc.) tend to show higher treatment

effects (more than double) compared to those plots with more “positive” characteristics.

8Figure E.7 reports of the typical estimates for tree cover (%) by Region, Department and Ecoregion.
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Figure 4: The Effects of Forest Incentives on Tree Cover (%) and Above and below ground biomass carbon (MgC/ha) by
Region - 10 years since treatment
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Figure 5: The Effects of Forest Incentives on Tree Cover (%) and Above and below ground biomass carbon (MgC/ha) by
initial plot conditions - 10 years since treatment

22



4.2 Cost-benefit analysis

Table 4 reports the results of the cost-benefit analysis. Assuming permanence of bene-

fits (benefits do not disappear over time), our results indicate a total benefit (ecosystem

services and carbon) of 565-659 USD/ha for all projects combined, 330-390 USD/ha for

PINPEP and 996-1150 for PINFOR/PROBOSQUE. By project type, forestry plantations

(1,126-1,302 USD/ha] and restoration projects (2,352-2,707 USD/ha) have higher benefits

per hectare. These environmental benefits are lower than the costs for all types of projects

except one with an average cost-benefit ratio of 0.31-0.36. These numbers reflect two fea-

tures of Guatemala’s forest incentive programs: these programs are quite generous (as

generous as the most generous programs in the region, see Cristales et al. (2022)) and

their effects are slightly lower than the effect of comparable programs (see Wunder et al.

(2020)).

Table 4: Cost-benefit analysis

Benefits

Eco-system services
Carbon Total Costs Ratio

Low High

All 62 156 503 [565, 659] 1818 [0.31, 0.36]
PINPEP 40 100 290 [330, 390] 1617 [0.2, 0.24]
PROBOSQUE 102 256 894 [996, 1,150] 1,949 [0.51, 0.59]
PINPEP, Agroforestry 46 115 319 [365, 434] 715 [0.51, 0.61]
PINPEP, Forestry 117 293 1,009 [1,126, 1,302] 1,430 [0.79, 0.91]
PINPEP, NFM (Production) -16 -39 11 [-5, -28] 2,086 [0, -0.01]
PINPEP, NFM (Protection) 28 70 130 [158, 200] 1,656 [0.1, 0.12]
PROBOSQUE, Agroforestry 46 115 319 [365, 434] 501 [0.73, 0.87]
PROBOSQUE, Forestry 117 293 1,009 [1,126, 1,302] 2,312 [0.49, 0.56]
PROBOSQUE, NFM (Production) -16 -39 11 [-5, -28] 1873 [-0.03, -0.15]
PROBOSQUE, NFM (Protection) 28 70 130 [158, 200] 1,933 [0.08, 0.1]
PROBOSQUE, Restoration 236 591 2,116 [2,352, 2,707] 1,831 [1.28, 1.48]
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5 Conclusion

This paper studies the environmental effects of forest incentive programs in Guatemala,

one of the largest and longest running forest incentive programs in the world. Using

differences-in-differences with matching, we document that forest incentives have a pos-

itive impact on tree cover and carbon storage. The effects become more pronounced over

time and do not revert after incentives end. Albeit significant, the results are quantita-

tively modest: the three programs evaluated increase tree cover and carbon storage be-

tween 4-6%. Because the programs are quite generous, environmental benefits are not

enough to cover the programs’ costs. These mean effects hide considerable heterogene-

ity – we find higher effects (although not sufficient to cover costs) for projects focused

in forestry or agro-forestry (and lower for conservation projects) located in regions with

more deforestation pressure.

Our analysis has important implications for the redesign of Guatemala’s forest incentive

programs as it shows that there is substantial scope for improving these benefits. First,

monitoring should be enhanced by establishing clear and quantifiable indicators for each

of the programs’ objectives. This is imperative to ensure they respond to changing condi-

tions and outcomes. Second, our results reveal heterogeneous effects across regions and

property types, underscoring the need for improved targeting. Tailoring program design

to reflect this heterogeneity can increase both equity and cost effectiveness. Finally, we

find that the environmental effects of incentives for different activities are quite differ-

ent. Therefore, adjusting payment structures to better reflect the relative environmental

value of these activities represents a critical opportunity to improve overall program per-

formance.

As the most generous forest incentive programs in Latin America and the Caribbean

(LAC), Guatemala’s initiatives provide valuable insights for broader policy contexts. De-

spite their scale, our analysis points to low cost-effectiveness, a challenge that can be ad-
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dressed through policy actions such as improved targeting and monitoring mechanisms.

Other countries considering or implementing similar programs can learn from both the

strengths and limitations of Guatemala’s approach, using this experience to design more

efficient and sustainable forest conservation policies. In conclusion, our work contributes

to both the empirical and policy literatures by demonstrating how high-resolution spatial

data and dynamic program evaluation methods can inform environmental policy design

at a global level. Future research is needed to understand the economic and environmen-

tal effects of these programs in broader policy contexts, as well as their effects on people’s

well being.
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A Datasets and variables used

Table A.1 summarizes the datasets and variables used in our analysis for propensity

score matching and to model above and below-ground biomass carbon density. Table C.1

presents descriptive statistics for the four outcome variables used in this assessment (tree

cover, above and below ground biomass carbon, Landsat 7 FVC, and Landsat 7 NDVI) for

treated and matched untreated plots.
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Table A.1: Summary of data used for modelling

Name Concept Units Time
coverage

Spatial
resolution

Data source

agbc Above ground biomass carbon MgC/ha 2010 300m Spawn et al. (2020)
bgbc Below ground biomass carbon MgC/ha 2010 300m Spawn et al. (2020)
y y coordinate of plot centroid degrees - - Calculated with R based on data

provided by INAB
x x coordinate of plot centroid degrees - - Calculated with R based on data

provided by INAB
landsat_ndvi annual mean normalised difference

vegetation index (NDVI)
- 2001-2023 100m(*) Ermida et al. (2020)

landsat_lst annual mean land surface temperature Kelvin 2001-2023 100m(*) Ermida et al. (2020)
landsat_fvc annual mean fractional vegetation

cover
fraction 2001-2023 100m(*)

30m(**)
Ermida et al. (2020)

landsat_em annual mean emissivity fraction 2001-2023 100m(*) Ermida et al. (2020)
glad_forest_cover mean forest cover fraction 2000, 2020 30m Potapov et al. (2022)
glad_forest_height mean forest height meters 2000, 2020 30m Potapov et al. (2022)
elevation distance above sea level meters - 90m Jarvis et al. (2008)
slope measure of steepness degrees - 90m Jarvis et al. (2008)
aspect orientation of slope in degrees from 0

to 360
degrees - 90m Jarvis et al. (2008)

modis_perc_tree tree cover % 2001-2023 250m Dimiceli, Sohlberg and Town-
shend (2022)

modis_perc_nontree_veg non-tree cover % 2001-2023 250m Dimiceli, Sohlberg and Town-
shend (2022)

modis_perc_nonveg non-vegetation cover % 2001-2023 250m Dimiceli, Sohlberg and Town-
shend (2022)

ttc_20k Travel time to cities with a population
larger than 20k

minutes - 100m Nelson et al. (2019)

dist_to_river_2010 Distance to rivers and streams meters 2010 - Lehner and Grill (2013)
annualPrecip Mean annual precipitation mm average

1970-2000
100m Hijmans et al. (2005)

annualMeanTemp Mean annual temperature °C average
1970-2000

100m Hijmans et al. (2005)

precipDriestMonth Precipitation during driest month mm average
1970-2000

100m Hijmans et al. (2005)

(*) Original resolution at 30m, but calculated at 100m due to resource restriction
(**) additionally calculated at 30m to estimate treatment effect
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B Building Controls

Following methods used by Patrick, Butsic and Potts (2023) we created 500,663 non-

overlapping 100m radius (3.1ha) potential control plots using the Open Source Geographic

Information System QGIS (version 3.22.8-Białowieża) (QGIS Development Team, 2024).

We used the following procedure:

1. We identify the area within Guatemala that doesn’t contain any forest incentive

projects (INAB’s database) nor any protected areas (UNEP-WCMC, 2024). We do

this by using the "Difference" algorithm in combination with the country, forest in-

centives and protected areas shapefiles.

2. We generate a 350m x 350m grid using the "create grid" algorithm (rectangle) for the

extent of the area identified in 1). A total of 1,607,148 grid cells were generated.

3. We use the "Extract by location" algorithm to extract grid cells from 2) that ’are

within’ the area identified in 1). A total of 500,663 grid cells are extracted.

4. We use the "Geometry by expression" algorithm to generate circular plots of 100m

radius ( 3.1 hectares) centered on grid cells extracted in 3).
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Figure B.1: Maps of (A) Guatemala, (B) INAB’s forest incentives, (C) Protected Areas, and
(D) Search area for controls

After this, we used propensity score matching to select one control plot for each treated

plot. This procedure is detailed in appendix C.
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C Propensity Score Matching (PSM)

We used propensity score matching to select 1 control for each treated plot. The process

we used, adapted from Hui, Ma and Hübner (2023), is as follows:

1. Choose relevant covariates: following methods used by Patrick, Butsic and Potts

(2023) we selected the following covariates: (1) elevation, (2) aspect, (3) slope, (4)

GLAD forest cover 2000, (5) GLAD forest height 2000, (6) travel time to cities with

a population larger than 20k, (7) distance to rivers and streams, (8) mean annual

precipitation (mean of 1970-2000), (9) mean annual temperature (mean of 1970-2000),

and (10) precipitation of driest month (mean of 1970-2000).

2. Extraction of covariates: we used the ’exact_extractr’ function from the ’exactex-

tracr’ R package (Daniel Baston, 2020) to extract the mean values for the selected

covariates for each of the treated and untreated (or control) plots. After this process,

we dropped all plots (treated and untreated) that had missing data, ending up with

79020 treated plots and 489061 potential control plots.

3. Estimate the propensity score: We modelled the propensity score using the MatchIt

package (Ho et al., 2011) in the R statistical software (R Core Team, 2018). Treated

plots were assigned a value of 1 while control plots were assigned a value of 0. For

our main analysis, we used a logistic regression with no replacement and all controls

(489,061 controls with complete data on covariates). We performed the following

sensitivity analyses:

(a) function for calculating the propensity score - we used the following alternative

functions or methods to calculate the propensity score: probit, gam, lasso, ridge,

glmnet, bart, and randomforest.

(b) replacement of controls - we calculated with and without replacement of controls.

(c) number of potential controls - we tested allowing the algorithm to select from
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the following number of controls: 97800, 195600, 293400, 391200, or 489061 (all

potential controls).

4. Match treated and untreated: After modelling, we used the ’match.data’ function

from the MatchIt package, which matches treated and untreated plots minimising

the distance between them (i.e., the propensity score).

5. Evaluate matches: We evaluate our matching procedure using different methods:

(a) visual inspection: we look at the region of common support before and after

matching, and different density plots to check covariate balance.

(b) t-test: we calculate t-test to test for differences in means between treated and

untreated plots after matching

(c) Kolmogorov–Smirnov test: we apply the Kolmogorov-Smirnov Goodness of Fit

Test (K-S test) to compare if covariates from treated and untreated plots have

the same distribution.
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Figure C.1: Summary for main matching model
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Figure C.2: Annual means for outcome variables for treated and matched untreated plots
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Table C.1: Descriptive statistics for outcome variables (2001, 2023, and change)

Treated Untreated*
Variable All PINFOR PINPEP PROBOSQUE All

Tree cover (%)
2001 44.7 (20.2) 44.4 (21.2) 42.8 (20) 51 (18.9) 45.1 (18.8)
2023 48.2 (18.9) 47.4 (18) 46.9 (19.1) 52.9 (18) 46.6 (18)
∆ 2003-2001 3.5 (11.4) 3 (14) 4.1 (10.4) 1.8 (12.5) 1.5 (12.9)

abgbc (MgC/ha)
2001 61.9 (24.5) 57.5 (27.8) 61.7 (23.8) 64.9 (24.2) 61.4 (23)
2023 66.4 (21.4) 62.9 (22.4) 67 (21.3) 66.6 (21) 64.2 (21.4)
∆ 2003-2001 4.5 (10.8) 5.4 (14.8) 5.3 (9.3) 1.6 (11.8) 2.8 (12.2)

Landsat 7 FVC (-)
2001 0.56 (0.238) 0.583 (0.263) 0.519 (0.223) 0.674 (0.229) 0.568 (0.231)
2023 0.67 (0.186) 0.694 (0.171) 0.648 (0.191) 0.723 (0.166) 0.658 (0.172)
∆ 2003-2001 0.11 (0.184) 0.11 (0.191) 0.129 (0.18) 0.049 (0.176) 0.09 (0.19)

Landsat 7 NDVI (-)
2001 0.651 (0.137) 0.672 (0.138) 0.628 (0.132) 0.71 (0.13) 0.662 (0.134)
2023 0.719 (0.103) 0.734 (0.089) 0.707 (0.108) 0.748 (0.091) 0.719 (0.094)
∆ 2003-2001 0.068 (0.111) 0.062 (0.101) 0.079 (0.11) 0.037 (0.112) 0.057 (0.113)
* mean (standard deviation) for treated and matched untreated plots
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D Modeling Above and Below-Ground Biomass Carbon Den-

sity

We trained a random forest model to predict above and below ground biomass carbon

(abgbc) density for years 2001-2009 and 2011-2023. We modelled abgbc as a function of:

(1) x coordinate, (2) y coordinate, (3) elevation, (4) aspect, (5) slope, (6) GLAD forest cover

(mean of 2000 and 2020), (7) GLAD forest height (mean of 2000 and 2020), (8) mean annual

precipitation (mean of 1970-2000), (9) mean annual temperature (mean of 1970-2000), and

(10) precipitation of driest month (mean of 1970-2000), (11) MODIS tree cover (%), (12)

MODIS non-tree vegetation cover (%), (13) MODIS non-vegetation cover (%), (14) LAND-

SAT land surface temperature, (15) LANDSAT fractional vegetation cover, (16) LANDSAT

emissivity, (17) LANDSAT NDVI. In our model, the independent variable was abgbc for

2010 from Spawn et al. (2020), which was calculated as the sum of above- and below-

ground biomass carbon density. A full dataset for 2010 was used to train our model.

Variables (1)-(10) were kept constant for all years, while MODIS (11-13) and LANDSAT

(14-17) variables varied each year.

To develop our model we first split our dataset (2010 data) into a training (90% of dataset)

and a validation set (10% of dataset). We tested the performance of our model with the

out-of-bag (OOB) R-squared and the R-squared calculated on the validation set (unseen

data). Our model obtained similar performance values for OOB and validation with an

R-squared of 81.5% and a root mean squared error (RMSE) of 13.8. Figure D.1 shows a

scatter plot of predicted vs. original values from (Spawn et al., 2020) for the validation set

(i.e., 10% of left out data).

The top 5 most important variables (Figure D.2) were: (1) GLAD forest height, (2) GLAD

forest cover, (3) MODIS tree cover, (4) MODIS non-tree vegetation cover, and (5) LAND-

SAT FVC.
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Figure D.1: Predicted vs. (Spawn et al., 2020) above and below ground biomass carbon
density: (A) out-of-bag, (B) validation set

Figure D.2: Variable importance of random forest model
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E Additional Results

Figure E.1: The Effects of Forest Incentives on tree cover (%), abgbc (Mg/ha), FVC (-), and
NDVI(-): DID w/matching
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Figure E.2: The Effects of Forest Incentives on tree cover (%), abgbc (Mg/ha), FVC (-), and
NDVI(-): DID w/matching vs. event study

Table E.1: Treatment effect by outcome variable and assessment method

Outcome
variable

Years
since
treatment

DID w/matching Event study estimator

Tree cover (%) 5 0.81 (0.69 - 0.92)*** 1.32 (1.23 - 1.4)***
10 2.51 (2.27 - 2.76)*** 2.99 (2.84 - 3.14)***

Above and below ground biomass carbon 5 1.01 (0.91 - 1.11)*** 1.2 (1.13 - 1.28)***
10 2.69 (2.46 - 2.92)*** 3.03 (2.88 - 3.17)***

Landsat 7 FVC 5 0.02 (0.02 - 0.02)*** 0.02 (0.02 - 0.02)***
10 0.03 (0.03 - 0.04)*** 0.05 (0.05 - 0.06)***

Landsat 7 NDVI 5 0.01 (0.01 - 0.01)*** 0.01 (0.01 - 0.01)***
10 0.01 (0.01 - 0.02)*** 0.02 (0.02 - 0.03)***

Notes: *** p<0.01; ** p<0.05; * p<0.10.
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Figure E.3: Treatment effect by program and years of treatment (DID w/matching) - Tree
Cover (%) and Above and Below Ground Biomass Carbon (MgC/ha)

Figure E.4: Treatment effect by project type and years of treatment (DID w/matching) -
Tree Cover (%) and Above and Below Ground Biomass Carbon (MgC/ha)
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Figure E.5: The Effects of Forest Incentives on Tree Cover (%) and Above and below ground biomass carbon (MgC/ha) by
Department - 10 years since treatment
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Figure E.6: The Effects of Forest Incentives on Tree Cover (%) and Above and below ground biomass carbon (MgC/ha) by
Ecoregion - 10 years since treatment
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Figure E.7: Treatment effect by (A) Region, (B) Department and (C) Ecoregion (DID
w/matching) - Tree Cover (%) - 10 years after treatment
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Figure E.8: Treatment effect by initial conditions (10th and 90th percentiles) after 10 years by model used for matching - DID
w/matching
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Figure E.9: Treatment effect (all programs) after 10 years by model used for matching - DID w/matching
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